
This presentation is a case study of the use of Semantic MediaWiki for
knowledge management.

Well, “case study”? This presentation is a showcase, based on
personal experience, but without in-depth methodical investigation.

This presentation is not the right platform to explain ICT infrastructure architecture in full, but to
appreciate the knowledge system built for it, we quickly glance over the essence of
infrastructure architecture anyway.

An empty slide, to let all the new information from the last slide sink in… After all this
presentation is the last one on the second day..

A short characterization of the DYA|Infrastructure methodology, which serves as the backbone
of the knowledge management system

This slide shows the top half of a single page in the repository; if anyone is curious, the content
of the repository is publicly accessible at the given URL

This screenshot shows the KLM/AF infrastructure repository, which is not accessible from the
Internet.

This is basically what the repository is for: creating patterns of infrastructure functions.

The example on the left is a “pattern type” (generic mould) that can be used to create
application access protection facilitiesapplication access protection facilities

The picture on the right is a “pattern variant” (a more specialized version of the generic mould)
that describes the facility that provides application access protection to the KLM webfarm.

The repository contains different types of architecture artefacts. This picture illustrates the
interrelations between 8 such types. Each blue rectangle is a class of architecture artefact,
which is recognized as an SMW Category. The arrows indicate possible semantic relations.
Thus we can see that in the Repository, one can find that “this Building Block Variant” “Belongs Thus we can see that in the Repository, one can find that “this Building Block Variant” “Belongs
to” “that Working Area”.

Forms: e.g. Building Block Variant creation

Lists: e.g. Building Block Types

Statistics: e.g. front page counters

Inheritance: e.g. Building Block Type icon

Checks: e.g. Pattern Variant check on Building Block Variant placement in an Environment

OK so THIS is – in my opinion, anyway – a representation of an information model. Why do we
need one?

-To keep track of the relations that we have available, e.g. for queries

-To help us consider the completeness of our representation of the recorded knowledge-To help us consider the completeness of our representation of the recorded knowledge

Having an information model is slightly more important for abstract knowledge domains (e.g.
wiki’s that are “dressed” as on-line applications) than for concrete knowledge domains (e.g.
wiki’s that record information about a specific topic, like game characters, towns, graves etc),
but I believe they ALWAYS help!

Ad 1) Do not attempt to annotate everything and then some. Limit the domain you’ll model, at
least initially

Ad 2) It can be hard to determine if information belongs in a section of a page, or should be put
in its own separate page, and then referenced from the first page. It can also be hard (at least in its own separate page, and then referenced from the first page. It can also be hard (at least
initially) to see if some aspect is a class or a relation.

Ad 3) Don’t “propertize” too much information. It is doubtful that a semantic wiki about beer
needs a property for the middle name of the owner of the factory that delivers the paper to the
printer of the adhesive labels for the beer bottles. On the other hand, don’t be afraid to
introduce “artificial” properties that help your knowledge system, e.g. the DIR’s page version
number, or the ordinal number for a quality attribute level (Availability “high” corresponds to
Availability ordinal “30”)

Ad 4) The picture on the last slide shows how a graphic representation can help you keep track
of 8 classes and 16 relations.

Ad 5) Don’t overdo it! Don’t try to write out the whole information model in full before starting
your wiki (but conversely, don’t just make everything up as you go along, only recording it at the
last possible moment). Think carefully about one aspect, structure it semantically, implement it
in a mockup page, then create the templates and forms, and update your information model

